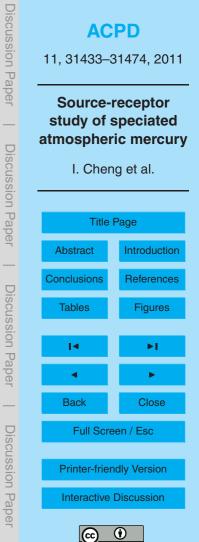
Atmos. Chem. Phys. Discuss., 11, 31433–31474, 2011 www.atmos-chem-phys-discuss.net/11/31433/2011/ doi:10.5194/acpd-11-31433-2011 © Author(s) 2011. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Source-receptor relationships for speciated atmospheric mercury at the remote experimental lakes area, Northwestern Ontario, Canada

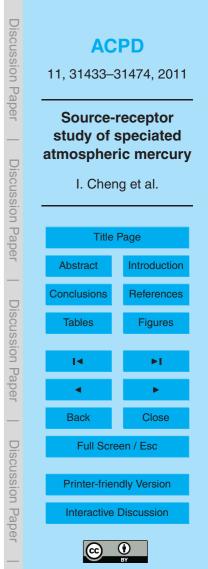

I. Cheng¹, L. Zhang², P. Blanchard², J. A. Graydon³, and V. L. St. Louis³

 ¹5785 Yonge St, Toronto, Ontario M2M 4J2, Canada
 ²Air Quality Research Division, Science and Technology Branch, Environment Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
 ³Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada

Received: 7 September 2011 – Accepted: 14 November 2011 – Published: 1 December 2011

Correspondence to: L. Zhang (leiming.zhang@ec.gc.ca)

Published by Copernicus Publications on behalf of the European Geosciences Union.


Abstract

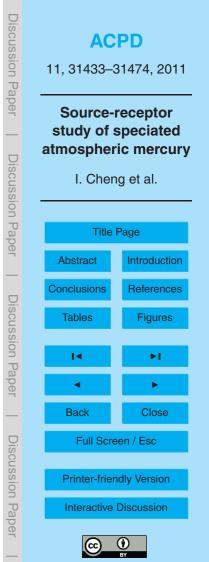
Source-receptor relationships for speciated atmospheric mercury measured at the Experimental Lakes Area (ELA), Northwestern Ontario, Canada were investigated using various receptor-based approaches. The data used in this study include gaseous elemental mercury (GEM), mercury bound to fine airborne particles (<2.5 μm) (PHg), reactive gaseous mercury (RGM), major inorganic ions, sulphur dioxide, nitric acid gas, ozone, and meteorological variables, all of which were measured between May 2005 and December 2006. The source origins identified were related to transport of industrial and combustion emissions (associated with elevated GEM), photochemical
 production of RGM (associated with elevated RGM), road-salt particles with adsorption of gaseous Hg (associated with elevated PHg and RGM), crustal/soil emissions, and background pollution. Back trajectory modelling illustrated that a remote site, like the ELA, is affected by distant Hg point sources in Canada and the United States. The sources identified from correlation analysis, principal components analysis and

- ¹⁵ K-means cluster analysis were generally consistent. The discrepancies between the K-means and Hierarchical cluster analysis were the clusters related to transport of industrial/combustion emissions, photochemical production of RGM, and crustal/soil emissions. Although it was possible to assign the clusters to these source origins, the trajectory plots for the Hierarchical clusters were similar to some of the trajectories
- ²⁰ belonging to several K-means clusters. This likely occurred because the variables indicative of transport of industrial/combustion emissions were elevated in at least two or more of the clusters, which means this Hg source was well-represented in the data.

1 Introduction

Source-receptor relationship studies on atmospheric mercury (Hg) advance our understanding of sources, transformation, transport, and fate of Hg in the environment, as well as provide scientific evidence for developing Hg control policies. Two major

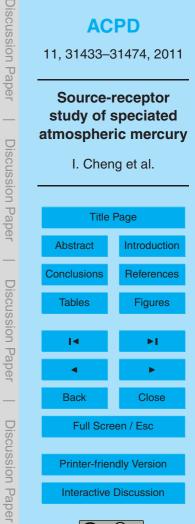
categories of methods exist in studying Hg source-receptor relationships: sourcebased and receptor-based methods. Source-based methods require source emission rates and profiles, meteorological forecasts, and knowledge of chemical reactions to predict pollutant concentrations at the receptor site while receptor-based methods


⁵ mainly use ambient pollutant measurements to infer potential sources contributing to the receptor measurements and/or quantitatively apportion the contribution of major sources to receptor measurements (Bullock et al., 2000; Hopke, 2003).

Many studies using source-based methods have been conducted for Hg during the past decade (e.g., Xu et al., 2000; Bullock and Brehme, 2002; Lin and Tao, 2003; Das-

- toor and Larocque, 2004; Christensen et al., 2004; Gbor et al., 2006; Ryaboshapko et al., 2007; Selin et al., 2007; Sillman et al., 2007; Bullock et al., 2008; Vijayaraghaven et al., 2008; Lin et al., 2010). Source-based atmospheric Hg models have been subjected to sensitivity analyzes and some inter-comparisons, but currently very few model simulations have been evaluated extensively with field measurements (Ryaboshapko
- et al., 2007; Bullock et al., 2008; Zhang et al., 2011). Many of the modelling studies are working towards improving the atmospheric Hg chemistry component of the model to better simulate RGM and PHg concentrations and reducing uncertainties in estimates of Hg emissions from Asia, South America and Africa, natural sources, and previously-deposited Hg (Gbor et al., 2006; Ryaboshapko et al., 2007; Dastoor et al., 2008; Lohman et al., 2008; Pirrone et al., 2010).

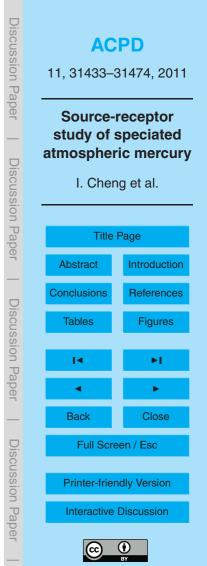
Various techniques have been used in receptor-based methods. One technique uses multiple pollutants measurements to investigate source-receptor relationships, where a linear equation is used to represent a mass balance of the chemical species at the source and receptor site (see reviews in Hopke, 2003; Watson et al., 2008; Hopke and


²⁵ Cohen, 2011). For example, Pervez et al. (2009) used the Chemical Balance Model to apportion particulate Hg in dust samples; Keeler et al. (2006) applied the USEPA Positive Matrix Factorization (PMF) and UNMIX models to identify and apportion sources of Hg wet deposition; Cheng et al. (2009) also used PMF model to explore the sources of atmospheric Hg in an urban center. Another technique frequently used in receptor

based speciated atmospheric Hg studies is to locate potential sources by tracking the movement of air parcels reaching the receptor site using back trajectory models, e.g., HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) (Abbott et al., 2008; Li et al., 2008; Lyman and Gustin, 2008; Sprovieri et al., 2010a). Combination of the above two techniques with other techniques have also been used in receptor-based studies. For example, trajectory endpoints have been combined with source contributions from the PMF model or pollutant concentrations data to create Hybrid Receptor Models, such as Potential Source Contribution Function (PSCF), Simplified Quantitative Transport Bias Analysis (SQTBA), and Concentration Field Analysis (CFA). These methods have been employed to investigate source-receptor relationships for atmo-

- ¹⁰ methods have been employed to investigate source-receptor relationships for atmospheric Hg (Han et al., 2005, 2007; Rutter et al., 2009; Xu and Akhtar, 2010). Conditional Probability Function uses local wind direction data instead of trajectory endpoints to determine wind sectors associated with elevated atmospheric Hg concentrations (Liu et al., 2007; Huang et al., 2010). The use of statistical analysis methods, such as Cor-
- relation Analysis, Principal Components Analysis and Cluster Analysis, have also been reported in other speciated atmospheric Hg studies (Liu et al., 2007; Brooks et al., 2009; Sigler et al., 2009; Huang et al., 2010). All the studies mentioned above typically employed one or more of the receptor-based techniques to create a more robust solution and interpretation of results.

²⁰ Concentrations of speciated atmospheric Hg, which includes gaseous elemental Hg (GEM), Hg bound to airborne particles (PHg), and reactive gaseous Hg (RGM), have been measured in polar, remote, rural, coastal, urban, and industrial areas (Sprovieri et al., 2010b). In the past, most speciated atmospheric Hg studies focused on analyzing trends in Hg and included brief discussions on the impacts of potential emission sources (Poissant et al., 2004; Gabriel et al., 2005; Hall et al., 2006; Manolopoulos et al., 2007; Song et al., 2009). However, identifying the contributions of different sources or different industrial sectors to receptor measurements requires more sophisticated techniques discussed above. Long-term measurements of speciated atmospheric Hg are ideal for conducting such source-receptor relationship studies. To date,

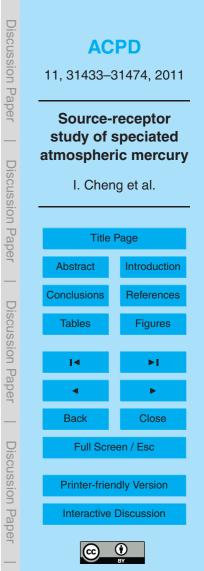


there are only a few studies in Canada investigating source-receptor relationships for speciated atmospheric Hg, and mainly studied urban (Cheng et al., 2009; Song et al., 2009) and rural-agricultural/industrial settings (Poissant et al., 2004, 2005; Cobbett and Van Heyst, 2007; Baya and Van Heyst, 2010). Thus, it is currently unknown to what point sources or other factors were affecting atmospheric Hg concentrations in remote (non-polar) sites in Canada. One objective of the present study is to investigate the source-receptor relationships for speciated atmospheric Hg concentrations measured at a remote site in Canada. But it has also been realized that different receptor-based methods were not always consistent when applied to the same data set, with the discrepancies thought to be related to differences in their theoretical approaches (Viana et al., 2008). Thus, another objective of the present study is to conduct intercomparisons of various receptor methods.

2 Methodology

2.1 Site description

- ¹⁵ Measurements of speciated atmospheric Hg were conducted at the Experimental Lakes Area (ELA: latitude 49°39′50″ N; longitude 93°43′16″ W; elevation 369 m), which is a remote Government of Canada field station in Northwestern Ontario, Canada specializing in whole-ecosystem experimentation. The site has a rugged Precambrian shield topography with hundreds of lakes ranging in size from 1 to > 200 ha surrounded
- ²⁰ by forested areas (ELA, 2010). The Tekran mercury speciation system is located at the ELA meteorological site (Atmospheric Environment Service designation: Rawson Lake Station), which is located approximately 0.5 km west of the ELA base station on lakes 239 and 240. The meteorological site is situated on a cleared granitic bedrock hill surrounded by a young jack pine/white birch forest regenerated following a fire in 1980.
- ²⁵ The surface below the sample inlet is bare bedrock. A Canadian Air and Precipitation Monitoring Network (CAPMoN) station is situated at the ELA site and has been

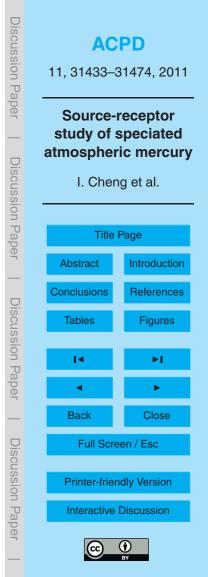

monitoring ground-level O_3 , SO_2 and HNO_3 gases and particulate Ca^{2+} , K^+ , Mg^{2+} , Na^+ , Cl, SO_4^{2-} , NO_3^- , and NH_4^+ since the 1980s (ELA, 2010).

The ELA site is approximately 50 km east of Kenora, which is the closest city with a population of ~ 15 200. The Trans-Canada highway is about 15 km north of the sampling site and a smaller highway (HWY71) is about 30 km west of the site. According to National Pollution Release Inventory (Environment Canada, 2010), the nearest point source of Hg emissions is about 100 km southeast of the ELA site. There are also several non-Hg emitting industrial facilities (e.g., chemical pulp and paper mills, waferboard mills, wood product manufacturing) within 100 km-radius of the ELA site that
emit sulfur oxides, nitrogen oxides, volatile organic compounds, fine particulate matter, and/or ammonia to the atmosphere (Environment Canada, 2010).

2.2 Speciated atmospheric mercury measurements

Gaseous elemental mercury (GEM), mercury bound to particulate matter < 2.5 μm (PHg), and reactive gaseous mercury (RGM) were measured using a Tekran mercury
speciation system (Models 1130/1135/2537A). The sample inlet was 1.31 m above ground level and sampled air at a flow rate of 101min⁻¹. Sampling flow rates for Tekran 2537A and 1130 were checked using Bios flow meters and were always within 5% and usually within 1% of the programmed values. GEM was measured every 5 min (reported as 1 h averages) except when PHg and RGM were analyzed and daily
automated instrument calibrations were performed. The sampling interval for PHg and RGM was 3 h with a 1 h desorption/analysis cycle. Field blanks for GEM were recorded during daily automated calibrations and for PHg and RGM during the desorption/analysis cycles. The detection limit for GEM was 0.1 ng m⁻³, whereas the detection limit for PHg and RGM were calculated as three times the standard deviation of the zero

²⁵ air values during desorption cycles over the course of the study (0.33 pg m⁻³). To ensure data accuracy, automated calibrations were performed every 28 h using an internal permeation source. Manual calibrations were also routinely carried out by injecting


a known quantity of GEM into the 2537A Tekran. Automated and manual calibrations agreed within, on average 4.9 ± 1.2 % over the course of this study. Although the accuracy of GEM measurements can be determined, calibration standards for RGM and PHg are not available because the chemical composition of these species are not com-

- ⁵ pletely known. These species may be in the form of Hg(OH)₂, HgCl₂, HgBr₂, or other halide compounds (Lindberg and Stratton, 1998); thus RGM and PHg are operationally defined. Furthermore to the issue are uncertainties in PHg measurements due to presence of sampling artifacts when denuders are used (Lynam and Keeler, 2005; Malcolm and Keeler, 2007). This has led to renewed interest in developing field calibration methods are used to renewed interest in developing field calibration.
- ¹⁰ methods, re-assessing the precision of the automated measurements with co-located Tekran speciation systems (Engle et al., 2008; Edgerton and Jansen, 2011), studying the effects of sampling artifacts and environmental interferences on atmospheric mercury measurements (Gustin and Jaffe, 2010; Lyman et al., 2010), and comparing automated methods to manual sampling and analysis techniques (Talbot et al., 2011).

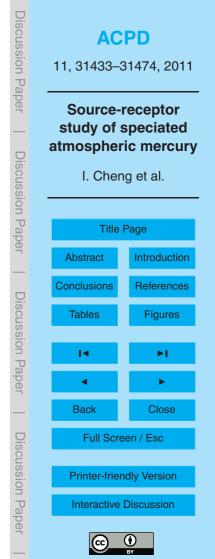
15 2.3 Supplementary data

For our source-receptor relationship study, co-located and concurrent measurements of other pollutants and meteorological data, as well as locations of regional Hg point sources, were required. 24-h integrated trace gases and major ions concentrations in particulate matter were obtained from CAPMoN via *NAtChem Database* (2010), and

hourly ground-level O₃ concentrations were obtained from the *NAPS network* (2011). Hourly air temperature, relative humidity, wind speed and wind direction data were obtained from the *Ontario Climate Centre* (2010). Locations of regional Hg point sources (with annual Hg emissions > 5 kg) were obtained from Canadian National Pollutant Release Inventory (Environment Canada, 2010) and US Toxics Release Inventory (USEPA, 2011).

2.4 Receptor-based methods

2.4.1 Analysis of trends and correlation analysis

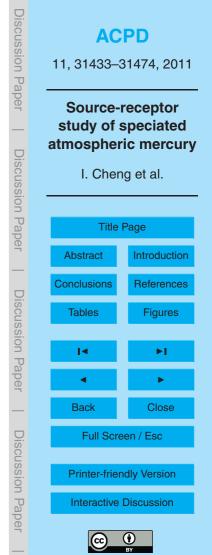

One-way analysis of variance was used to check for significant differences in the data between seasons, daytime and nighttime periods, and wind direction sectors. Spear-man's rank correlation coefficient was used in correlation analysis of the seasonal data.

⁵ man's rank correlation coefficient was used in correlation analysis of the seasonal data. In Spearman's rank correlation, the measurements of each variable are placed in order (ranked) and correlations are performed on the ranks of the data (StatSoft, 2011).

2.4.2 Principal components analysis

Principal components analysis (PCA) is a data reduction method that groups a set of variables into a smaller set of factors (Pallant, 2005). PCA was applied to the data set consisting of daily average pollutant concentrations and meteorological variables. The speciated atmospheric Hg data and hourly O₃ concentrations and meteorological data were averaged daily to correspond with the 24-h integrated trace gases and major ions concentrations. The initial PCA run, which included the Kaiser-Meyer-Olkin measure of sampling adequacy (> 0.6) and Bartlett's Test of sphericity (*p* < 0.05) tests, determined that PCA was a suitable method for the daily average data set. The number of factors to retain depends on the eigenvalue of each factor, scree plot, eigenvalues generated from Monte Carlo parallel analysis, and ability to characterize the factors (Pallant, 2005). Factors with eigenvalues greater than 1 and greater than those generated

ated from parallel analysis were retained. Factors that are above a "bend" in the scree plot were also kept. In the second PCA run, the number of factors for the final solution was entered and the Varimax rotation method was selected. The output from PCA consists of a table with factor loadings, which are correlation coefficients between the variables and each factor. The variables with high factor loadings were identified and used to interpret the potential sources of Hg.


2.4.3 Cluster analysis using K-means and hierarchical methods

K-means and hierarchical cluster analysis are methods used to classify a large set of measurements or variables into clusters based on minimizing variation within clusters and maximizing variation between clusters (StatSoft, 2011). In both cluster analysis methods, the daily average pollutant concentrations (without meteorological variables)

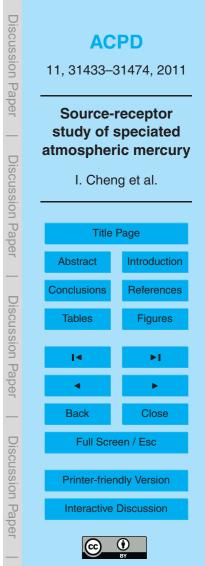
- were used. In the K-means method, the number of clusters needs to be specified. To compare with the factors obtained from PCA, the K-means method was run with 4, 5 and 6 clusters. The program begins with k random clusters with initial centres; individual measurements are moved between these clusters by an iterative process in order to
- ¹⁰ minimize variability within clusters and maximize variability between clusters. After the initial cluster centre is obtained, the program groups the next set of measurements in the iteration process based on the smallest euclidean distance from the cluster mean. In hierarchical cluster analysis, variables were standardized to *z*-scores and pollutant measurements were clustered using a squared euclidean distance measure. Initially,
- each pollutant measurement is itself a cluster, which are then joined together into a new cluster based on the smallest squared euclidean distance measure. Afterwards the new clusters are grouped together using a linkage method, called Ward's method, which tries to minimize the sum of squares between the two clusters. This process continues until all clusters are grouped into one large cluster.
- ²⁰ Clusters generated from K-means and Hierarchical methods were characterized into potential sources by identifying specific variables with elevated mean cluster centres (i.e., > 80th percentile concentration during the entire study period).

2.4.4 HYSPLIT back trajectory modelling

The HYSPLIT model (Draxler and Rolph, 2003; Rolph, 2003) of the NOAA Air Resources Laboratory was used to generate back trajectories for each day that was classified to a cluster. The EDAS (Eta Data Assimilation System) archived meteorological data, developed by the National Weather Service's National Centers for Environmental

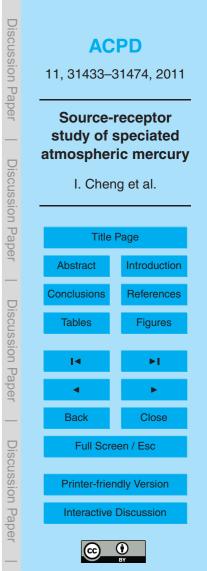
Prediction (NCEP), was selected as the meteorological input to the model. The meteorological data has been interpolated onto a 40 km grid that spans the United States and Canada. The vertical resolution covers 26 pressure surfaces from 1000 mbar to 50 mbar. Three trajectories were generated each day and the total run time for each

⁵ trajectory was 48 h. The trajectory start height was 100 m above model ground level, which was determined from vertical sounding data and the actual elevation at the ELA site. Trajectories belonging to a cluster were plotted together on Google Earth as well as with regional Hg point sources with emissions > 5 kg of Hg per year as reported in Canadian National Pollution Release Inventory and US Toxics Release Inventory.


10 3 Results and discussion

3.1 Speciated concentration patterns

The mean and standard deviation for GEM, PHg and RGM between 17 May 2005 and 31 December 2006 (entire study period) were 1.57 ± 0.22 ng m⁻³, 4.42 ± 3.67 pg m⁻³ and 0.99 ± 1.89 pg m⁻³, respectively (Table 1). As shown in Table 2, the average GEM concentrations at the ELA site were within the range of other remote sites and also slightly lower than rural locations with and without agricultural and industrial areas nearby. PHg concentrations at the ELA site were consistent with both the remote and rural sites, while the low RGM concentrations were consistent with only the remote sites. The finding that the measurements at the ELA site were in line with other remote of the sites are affected by anthropogenic Hg sources gives an idea about the procision of

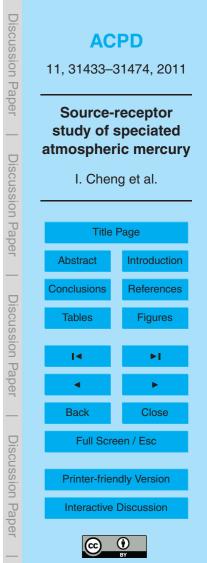

sites not affected by anthropogenic Hg sources gives an idea about the precision of the Tekran speciated atmospheric Hg data. However, without calibration standards for PHg and RGM to verify the accuracy of the measurements, the following discussion of seasonal and diurnal trends are subject to uncertainties.

The seasonal average GEM and RGM concentrations were highest during spring 25 2006 (1.75 ng m⁻³ and 2.4 pg m⁻³, respectively) compared to other seasons within the study period (p < 0.001) and also coincided with the highest average O₃ concentration

(39 ppb, *p* < 0.001) and one of the lowest relative humidity levels (67 %, *p* < 0.02). In other remote sites, the highest GEM concentrations were reported from winter to spring at Devil's Lake, Wisconsin (Manolopoulos et al., 2007), Adirondacks, New York (Choi et al., 2008), and two sites in New Hampshire (Sigler et al., 2009). For RGM, the concentrations were highest during the spring at Devil's Lake and in New Hampshire and during winter and summer at the Adirondacks. Maximum summer concentrations of GEM and RGM have also been observed at the remote site of Salmon Falls Creek, Idaho (Abbott et al., 2008). Previous studies at remote sites have attributed the higher GEM and RGM concentrations from winter to spring to increased emissions from coal
combustion sources due to wintertime heating (Choi et al., 2008; Sigler et al., 2009).

- Enhanced emissions of GEM from soil and vegetation between mid-April to June due to warmer temperatures and dryer conditions have also been reported at other remote locations (Sigler et al., 2009), which can explain higher GEM concentrations in spring and summer. At the ELA site, PHg concentrations were higher during winter, spring
- and summer 2006 (5.10–5.23 pg m⁻³) compared with other seasons (p < 0.06). Winter 2006 also corresponded to lowest average temperature (-9.6°C, p < 0.001) and highest mean concentrations of SO₂ (0.69 µg m⁻³, p < 0.001) and Na⁺ (0.06 µg m⁻³, p < 0.001). Summer 2006 was the warmest season during the entire study with an average temperature of 19°C (p < 0.001), and also similar to spring 2006, one of the
- ²⁰ lowest relative humidity levels (67 %, p < 0.02). The higher PHg concentrations in the winter at the ELA site were consistent with other remote and rural studies, which suggested that this observation was related to increase emissions from coal combustion in winter, condensation of gases on atmospheric particles at lower temperatures, and re-suspension of particles during windy conditions. In urban settings, the summer
- ²⁵ maximum in PHg has been attributed to higher PM_{2.5} concentrations in the summer, which provides more surface area for Hg adsorption (Huang et al., 2010). Unfortunately, PM_{2.5} concentrations were not measured at the ELA site to verify this point. At rural sites near agricultural areas, maximum PHg concentrations occurred in spring or fall corresponding to ploughing or harvesting activities that can increase soil erosion

(Poissant et al., 2005; Cobbett and Van Heyst, 2007). Although the lowest atmospheric Hg concentrations were observed during fall 2005 (1.37 ng m⁻³ for GEM, 2.4 pg m⁻³ for PHg, 0.08 pg m⁻³ for RGM), only GEM concentrations were significantly different from the other seasons (p < 0.001). Fall 2005 also corresponded to the lowest O₃ concentrations (24 ppb, p < 0.001).

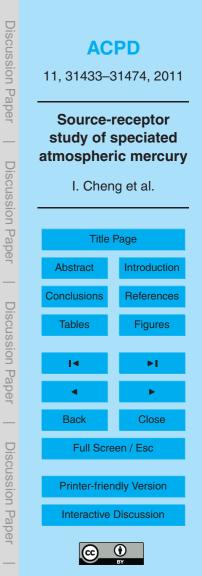

The relative standard deviation (daily standard deviation/daily mean expressed as a %) in the concentrations for each day on average is ± 3 % from the mean for GEM, ± 12 % from the mean for PHg and ± 52 % from the mean for RGM for the entire study period. Statistical differences were observed for GEM and RGM between 7:00–9:00 and 13:00–19:00 LT (p < 0.05), with higher concentrations observed from 13:00–19:00. In other remote and rural studies, RGM concentrations were typically higher during the day than at night (Poissant et al., 2005; Hall et al., 2006; Manolopoulos et al., 2007; Abbott et al., 2008; Sigler et al., 2009; Liu et al., 2010). Based on statistical comparison of the other variables between the two time periods, higher temperatures, wind speeds and O₃ concentrations and lower relative humidity levels were also observed at the

ELA site from 13:00–19:00 (*p* < 0.05).

5

By season, the largest diurnal variability for GEM occurred in spring and fall 2005, in which the latter season coincided with the largest diurnal variations in temperature, relative humidity and O_3 concentrations compared with other seasons (see Fig. 1a).

- ²⁰ In fall and winter 2006, the smallest diurnal variations in GEM, meteorological conditions, and O_3 were found. For PHg and RGM, the diurnal changes were largest in spring 2006, even though the diurnal variations in meteorological conditions and O_3 concentrations were not the largest or smallest compared with other seasons (see Fig. 1b and c). The smallest diurnal variability for PHg occurred in winter 2006 similar
- to GEM, but for RGM, this occurred in fall 2005 when the largest diurnal variation in temperature, relative humidity and O₃ concentrations were observed. The data suggests that the diurnal variation in GEM was more strongly influenced by changes in meteorological conditions than diurnal variations in PHg and RGM. Other studies conducted in remote/rural sites suggested the diurnal variation of GEM can also be due

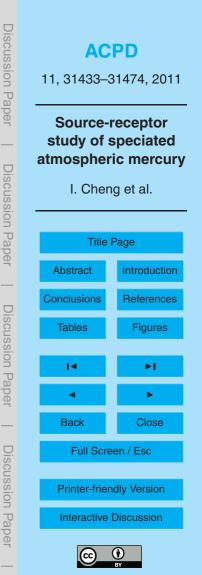

to a combination of changes in mixing height, meteorology, nighttime dry deposition, surface emissions and/or photo-reduction of RGM (Gabriel et al., 2005; Yatavelli et al., 2006; Manolopoulos et al., 2007; Choi et al., 2008, 2009; Sigler et al., 2009). Diurnal trends for PHg and RGM could be due to variations in source emissions and wind patterns, and photochemical processes (Manolopoulos et al., 2007; Abbott et al., 2008;

Choi et al., 2008; Sigler et al., 2009).

5

The prevailing wind (excluding calm wind speeds, $< 4 \text{ km h}^{-1}$) at the ELA site during the entire study period was from the southwest and south (18% and 17% of the data, respectively). However, the highest average GEM and RGM concentrations were observed when winds were from the southeast, which made up only 11% of the wind data. These average concentrations were found to be statistically higher than those that occurred when winds were out of the west and northwest (p < 0.02 for GEM and p < 0.001 for RGM). Average PHg concentration was highest when winds originated from the southwest, and statistically higher than those that occurred when winds were

- ¹⁵ from west, northwest, and northeast (*p* < 0.007). The average concentrations of the majority of the trace gases and major ions were highest from the south, which was fairly consistent with the speciated atmospheric Hg results. The mean SO₂ concentrations from the south were significantly different than those from northeast (*p* < 0.02). For Ca²⁺, K⁺ and Mg²⁺, the average concentrations observed when winds were out of
- ²⁰ the south were significantly different than those when winds from northwest (p < 0.04). The average concentrations of NH⁺₄, NO⁻₃, SO²⁻₄, and HNO₃ observed when winds were from the south were statistically different than the winds observed from southwest, west, and northwest (p < 0.03). Average HNO₃ concentrations from the south were also significantly larger than those from all other wind directions (p < 0.02). For
- ²⁵ Na⁺, only the mean concentration from the east was significantly higher than from the southwest (p < 0.03). The average Cl⁻ concentrations associated with a particular wind direction were not statistically different than those from other wind directions.



3.2 Correlation analysis

The Spearman rank correlation coefficients between PHg and other Hg species and pollutants for each season are shown in Table 3a, while the correlation coefficients for selected pollutants indicative of various source origins for each season are shown in Table 3b. Strong correlations between variables indicative of crustal/soil sources 5 and marine sources (i.e., Ca²⁺, K⁺, SO₄²⁻, Na⁺, Cl⁻, Mg²⁺ as discussed by Prendes et al., 1999, Mouli et al., 2005, and Viana et al., 2008) were found in every season (see Table 3b), except for spring 2005, which was excluded from the analysis due to the small number of speciated Hg data points. As shown in Table 3a, most of these variables individually were correlated with PHg in every season (except for winter 2006), 10 suggesting that the source of atmospheric Hg may be from re-suspended dust (from crustal/soil, road dust, point source dust emissions) containing previously-deposited Hg or adsorption of gaseous Hg on sea-salt aerosols. Particulate Hg can be formed by adsorption or condensation of GEM or RGM onto these particles (Schroeder and Munthe, 1998; Lu et al., 2001). Although crustal/soil and marine sources are often difficult to differentiate because they have similar compositions, Prendes et al. (1999)

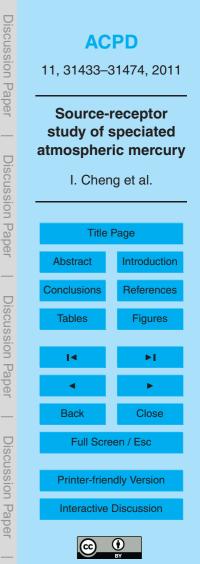
suggested that a lack of correlation between K and Ca and Na and Cl can be used to attribute particulate matter to construction and earthworks (i.e., crustal/soil as opposed to marine sources). In our study, the lack of correlation between these variables was

- ²⁰ observed in fall 2005 and spring 2006 (see Table 3b). For these seasons, the source of atmospheric Hg would be related to crustal/soil dust containing previously-deposited Hg. In winter 2006, PHg was strongly correlated with Na⁺, Cl⁻ and Mg²⁺ (marine components) but not with Ca²⁺ and K⁺ (see Table 3a). While significant scavenging of RGM by sea-salt aerosols have been reported in coastal areas (Selin et al., 2007;
- Malcolm et al., 2009), the transport of Hg bounded to sea-salt aerosols would not be the likely source of atmospheric Hg to a mid-continental site such as the ELA. Furthermore, Hg associated with sea-salt aerosols are typically larger than 2 to 2.5 µm, which means most of the sea-salt aerosols would be excluded by the 2.5 µm impactor and not

efficiently pass through the annular denuder of the Tekran speciation unit (Obrist et al., 2011; Talbot et al., 2011). Thus, the most probable source of PHg during winter is the transport of road dust that contained components of road-salt with adsorption or condensation of gaseous Hg. The above suggestion was supported by size-distribution data of Na⁺, Cl⁻ and Mg²⁺ collected at another rural site in Ontario (Algoma) and discussions on sea salt and road salt effects as presented in Zhang et al. (2008).

Variables related to agricultural sources (i.e., NH_4^+ and NO_3^- as discussed in Mouli et al., 2005) were correlated with each other and with PHg in the summer and fall seasons (Table 3a and b), which could mean the source of Hg is from the erosion of agricultural soil containing previously-deposited Hg. NH_4^+ formed from the reaction of nitric acid and sulphuric acid with ammonia, which might have originated from the

10


use of fertilizers for farming and chemical pulp and paper mills near the ELA site. Elevated PHg concentrations have been observed at rural sites near agricultural areas in Ontario, Canada, and typically occurred during the spring and fall seasons (Cobbett and Van Heyst, 2007; Baya and Van Heyst, 2010). In one of the studies, elevated

¹⁵ and Van Heyst, 2007; Baya and Van Heyst, 2010). In one of the studies, elevated PHg concentrations were related to the agricultural practice of applying biosolids (from sewage wastes) containing low concentrations of Hg (Cobbett and Van Heyst, 2007).

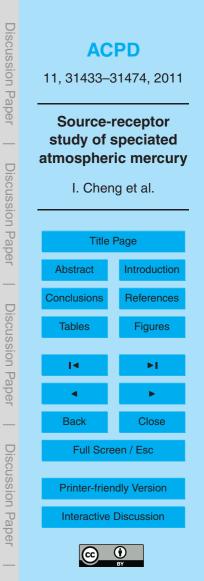
There is also some evidence of atmospheric Hg concentrations being affected by the transport of industrial emissions due to moderate correlations between SO₂, secondary

- ²⁰ pollutants (NH⁺₄, NO⁻₃, SO²⁻₄ as discussed in Lee and Hopke, 2006; Viana et al., 2008; Masiol et al., 2010) and PHg. The emissions may be related to combustion sources, such as waste incineration and coal combustion, because RGM was correlated with SO₂ in the spring, summer and fall seasons. RGM and Cl⁻ was also correlated in the summer and fall of 2006 (see Table 3b). According to Carpi (1997), Hg from waste
- incineration is emitted mostly in the divalent form (75–85%), while divalent Hg (mostly HgCl₂) makes up 50–80% of Hg emitted from coal combustion. The relatively shorter atmospheric residence time of RGM compared to GEM means the deposition of RGM is close to its source of emission (Schroeder and Munthe, 1998).

In addition to direct emissions of RGM, correlations between GEM and RGM, can

reveal whether RGM was mainly produced photochemically or directly emitted. Sillman et al. (2007) previously found that positive correlations between model-predicted concentrations of GEM and RGM indicated that RGM was directly emitted rather than produced by photochemical oxidation processes involving O_3 , OH, NO_x , sulfur and

- ⁵ halogens species, whereas a negative correlation suggested the latter mechanism dominated. As illustrated in Table 3b, the positive correlations between GEM and RGM during both summer seasons and fall 2006 would suggest direct emissions of RGM dominated over photochemical production of RGM. In other seasons, such as in fall 2005, winter 2006 and spring 2006, GEM-RGM correlation coefficients were close to zero. This look of correlation between CEM and RCM means that both mechanisms of
- ¹⁰ zero. This lack of correlation between GEM and RGM means that both mechanisms of RGM production were possible.

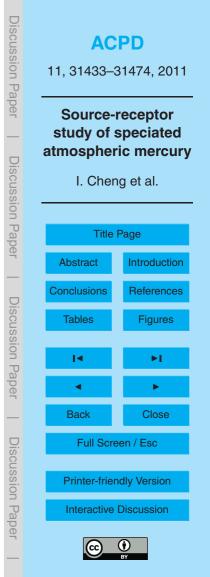

3.3 Principal components analysis (PCA)

25

Six factors were generated when PCA was initially applied to the daily average data consisting of all the variables. The initial factor loadings (i.e., correlation coefficients
between variables and factors) revealed that wind speed and total precipitation variables were not present in the factors that contained loadings for Hg and other pollutants. This suggests that these variables were not useful for characterizing potential sources of atmospheric Hg to the ELA. Therefore, PCA was applied again with all variables except wind speed and total precipitation. The total variance explained by the four factors generated (denoted by PCA-1 to PCA-4) was 70.4 %, with 22.6 %, 19 %, 15.5 % and 13.3 % explained by PCA 1–4, respectively.

PCA-1 had high factor loadings on GEM, HNO_3 , K^+ , and NH_4^+ , NO_3^- , and SO_4^{2-} (see Table 4). There were also moderate loadings on SO_2 , O_3 and Ca^{2+} . The pollutants with the most influence on this factor represent transport of industrial emissions or regional background pollution, as observed previously using correlation analyses. PCA-2, which

had high factor loadings on all three mercury species and O_3 , and negative loadings on relative humidity, may be related to strong pollution events associated with industrial

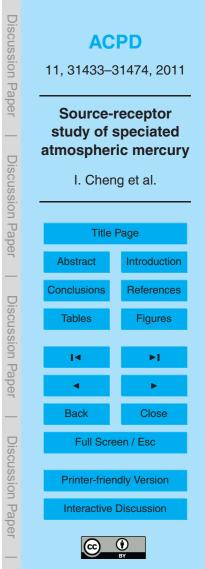


and urban areas. This factor also had some minor loadings for HNO_3 and SO_2 . The high factor loadings on RGM and O_3 , and negative loading on relative humidity, in PCA-2 were consistent with those obtained from the studies by Lynam and Keeler (2006) and Huang et al. (2010), who assigned the factor to photochemical or gas phase

- ⁵ oxidation. Even though O₃ was the only atmospheric oxidant of gaseous mercury measured at the site, other oxidants such as OH, Br and CI may be involved in the photochemical production of RGM. Recent studies in marine environments suggested that rapid depletion of GEM to RGM species were due to reactive halogens (Hedgecock et al., 2005; Peleg et al., 2007; Obrist et al., 2011), similar to the mechanism propose
- for AMDEs in polar atmosphere (Steffen et al., 2008). But this mechanism is not likely to occur at the ELA site, since the site is inland and far away from polar regions. Aside from RGM and O_3 , high loadings on temperature and negative loadings on GEM and NO_x were reported in previous studies (Liu et al., 2007; Huang et al., 2010). HNO₃ was likely present in the factor because it is the ultimate sink for NO_x (Wang and Shooter,
- 2001), which is typically emitted from industrial sources. The positive factor loadings on SO₂ and RGM as an indication of coal combustion sources were also reported in other studies (Lynam and Keeler, 2006; Liu et al., 2007; Huang et al., 2010), and consistent with the correlation analysis results from this study. PCA-3 contained a minor loading on PHg and strong loadings on K⁺, Ca²⁺ and Mg²⁺, which are components typical of crustal or soil sources. There is also a strong influence on this factor by temperature, which analysis the autoes and a strong process.
- which enhances the surface emission process. The factor loadings on PHg, Na⁺ and Cl⁻ in PCA-4 were consistent with adsorption of gaseous Hg on road-salt particles as discussed in the correlation analysis results.

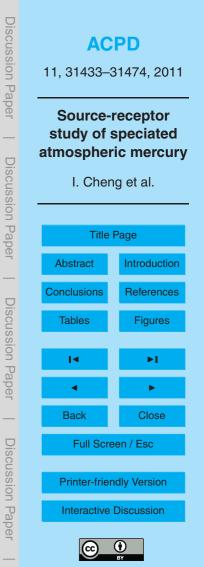
3.4 K-means cluster analysis

A five-cluster solution was chosen for K-means cluster analysis (KCA) after running the analysis with four and six clusters. The mean cluster centres shown in Table 5 were used to interpret the K-means clusters by identifying variables with high mean values (Masiol et al., 2010). The percentage of data with >75th percentile GEM, PHg and



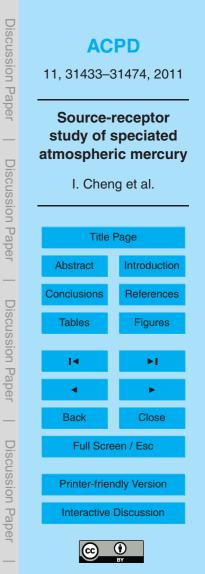
RGM concentrations (GEM = 1.7 ng m^{-3} , PHg = 6.09 pg m^{-3} , and RGM = 1.07 pg m^{-3} for the entire study period) were calculated for each cluster to determine which clusters were associated with elevated speciated atmospheric Hg concentrations.

- KCA-1 contained large mean clusters centres for PHg, Na⁺, and Cl⁻, and lower
 ⁵ mean temperatures (see Table 5), similar to the results obtained using correlation analysis and observed in PCA-4. This profile is likely related to winter road-salt particles, instead of sea-salt aerosols. KCA-2, which had high mean cluster centres for PHg, RGM, SO₂, HNO₃, Ca²⁺, Mg²⁺, K⁺, NH⁺₄, NO⁻₃, SO²⁻₄, and O₃, may be related to photochemical production of RGM, since this was the only cluster where the mean cluster
 ¹⁰ centres for RGM and O₃ were elevated. As previously discussed, there may be other atmospheric oxidants involved in mercury photochemistry in addition to O₃ and RGM may be directly emitted from anthropogenic point sources. The transport of industrial emissions as previously described was also apparent in KCA-3, which had high mean values for GEM, HNO₃, K⁺, NH⁺₄, NO⁻₃, and SO²⁻₄. KCA-4 had elevated mean cluster
- ¹⁵ centres for PHg, SO₂, HNO₃, Ca²⁺, Mg²⁺, K⁺, NH₄⁺, NO₃⁻, and SO₄²⁻, which is similar to some of elevated components in KCA-2. But in KCA-4, the mean cluster centres for SO₂, Ca²⁺, Mg²⁺, and NO₃⁻ were higher than KCA-2. Thus, KCA-4 is classified as emissions from crustal or soil sources. The final cluster (KCA-5) depicted background pollution due to lower mean cluster centres for all variables (Masiol et al., 2010). The
- ²⁰ bottom of Table 5 illustrates the proportion of data with GEM, PHg, or RGM concentrations > 75th percentile (for the entire study) in each cluster. KCA-3 (transport of industrial emissions) had the largest percentage of elevated measurements of GEM, and the largest percentages of elevated PHg and RGM values were KCA-1 (road-salt particles) and KCA-2 (photochemical production of RGM), respectively.


25 3.5 Hierarchical cluster analysis

To compare the results with those obtained from K-means cluster analysis, five clusters were also chosen for hierarchical cluster analysis (HCA) using Ward's method and

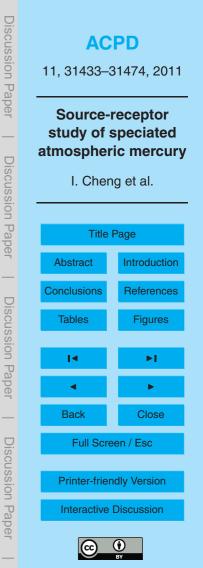
squared euclidean distance measure. HCA-1 and HCA-2 have similar mean cluster centres for GEM, PHg and RGM (Table 6). Both clusters contained slightly elevated mean cluster centre for GEM relative to the overall average GEM concentration of 1.56 ng m⁻³, and the mean cluster centres for PHg and RGM were close to their respective overall averages (4.42 pg m⁻³ for PHg and 0.99 pg m⁻³ for RGM). The major difference between the two clusters was the higher mean cluster centres for all the other pollutant variables in HCA-2. More specifically, the variables representative of transport of combustion and industrial emissions (i.e., SO_2 , HNO_3 , NH_4^+ , NO_3^- , SO_4^{2-}) were elevated in HCA-2. Analysis of back trajectory plots for these two clusters could help differentiate the clusters (discussed in Sect. 3.6). HCA-2 and KCA-3 have consis-10 tent mean cluster centres, but HCA-2 had elevated mean cluster centres for SO₂ and O₃. In addition to transport of industrial emissions, HCA-2 is attributed to transportation and combustion emissions, which frequently emit volatile organic compounds, CO and NO_2 that can lead to O_3 formation. The mean cluster centres of HCA-3 were consistent with those of KCA-5, which represented background pollution. HCA-4 consisted of 15 elevated mean cluster centres for RGM, SO₂, HNO₃, Ca²⁺, Mg²⁺, NH₄⁺, NO₃⁻, SO₄²⁻,


- and O₃. Although some of the variables identified as elevated in HCA-4 were similar to HCA-2, the main difference between the two clusters is the elevated mean cluster centres for RGM, Ca²⁺, Mg²⁺, and O₃ in HCA-4. The elevated mean cluster centre for both RGM and O₃ may be suggestive of photochemical production of RGM (consistent with
- KCA-2), and emissions from crustal/soil sources might have contributed to higher mean cluster centre for PHg. HCA-5 had high mean cluster centres for PHg, RGM, Na⁺ and Cl⁻, and low mean cluster centre for temperature, which was comparable to the KCA-1 cluster that was interpreted as road-salt particles containing previously-deposited Hg.
- ²⁵ The bottom of Table 6 illustrates that HCA-2 (transport of industrial emissions) had the largest percentage of elevated GEM concentrations, while HCA-5 (road-salt particles) had the largest percentages for both PHg and RGM. The percentage of data with elevated RGM concentrations was fairly high for HCA-4 as well.

3.6 HYSPLIT back trajectory analysis

The two day back trajectories for each of the clusters classified using the K-means method and Hierarchical Ward's method are shown in Figs. 2 and 3, respectively. Back trajectories for KCA-1 (K-means cluster 1) shown in Fig. 2a mainly passed over North-

- ⁵ western Ontario and Manitoba in Canada, which was consistent with the lower mean temperature for this cluster. Several trajectories traced back to fossil fuel power plants, metal and steel processing plants, and mining sites within Canada; however the majority of them did not encounter any Hg point sources. The contribution from road dust with salt components is a strong possibility because several trajectories passed over
- the Trans-Canada highway, which is approximately 15–20 km north and west of the ELA site. In Fig. 2b, the back trajectories for KCA-2 traced back to Western Canada, areas north of the ELA site, and states located south and southeast of the ELA site, such as Minnesota, Iowa, Wisconsin, Illinois, and Michigan. The Hg point sources in these states include power plants, paper mills, steel processing plants, and cement
- ¹⁵ plants, and there are also urban areas that contribute to transportation emissions. NO_x , CO and hydrocarbons are typically emitted from these sources, which can contribute to formation of ground-level O_3 and secondary organic aerosols. Elevated tropospheric O_3 concentrations have been observed in rural/remote areas downwind of urban and industrialized areas and persisted for several days covering an area over 500 000 km²
- 20 (Logan, 1989). Since many of the trajectories from the south also appeared slower moving (i.e., shorter trajectory) than the trajectories from Western Canada, the more stagnant air mass favours the buildup of O₃, which could play a role in the oxidation of GEM to RGM. However, recent studies are examining other atmospheric oxidants and reaction mechanisms for gaseous mercury and are finding that reactive halogen
- species are more likely to be responsible for the depletion and conversion of GEM to RGM in marine environments (Hedgecock et al., 2005; Peleg et al., 2007; Obrist et al., 2011). Back trajectories for KCA-3 are shown in Fig. 2c and mainly traced back to areas south of the ELA site, such as Minnesota and Wisconsin. Several trajectories were

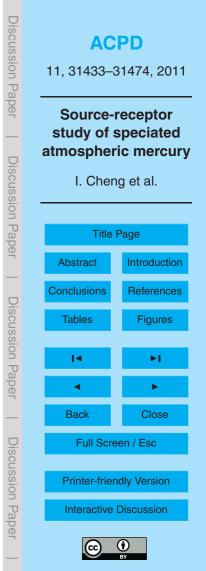

northwest of the ELA site and passed over power plants and steel processing plants in Winnipeg. Compared to the back trajectories for KCA-2, the trajectories for KCA-3 did not trace back to as many industrial and urban areas, which might have resulted in the lower average O_3 and also SO_2 concentrations. In Fig. 2d, the majority of the back trajectories for KCA-4, which represented emissions from crustal/soil sources and combustion and industrial sources, passed over Minnesota and Iowa, and a few trajec-

5

- tories traced back to remote areas northeast of the ELA site. The back trajectories for KCA-5 are shown in Fig. 2e. KCA-5 was associated with background pollution because of the lower mean cluster values for all the pollutants compared to other clusters
- and this interpretation is further supported by larger portion of trajectories that traced back to parts of Northern and Northwestern Canada compared to south of the ELA site. The transport of air masses from higher latitudes were also associated with lower factor scores for pollutant variables at the Detroit site (Liu et al., 2007).

In the analysis of the hierarchical mean cluster centres, it was found that the mean for Hg species for HCA-1 and HCA-2 (Hierarchical clusters 1 and 2) were similar, and mean cluster centres for all other pollutants were higher for HCA-2. Figure 3a and b illustrates the differences in the direction of the back trajectories for the two clusters. In HCA-1, the trajectories were northwest/north and south/southeast of the ELA site, whereas almost all of the trajectories in HCA-2 originated from south/southeast of the

- site where there is a higher density of Hg point sources. The trajectories for HCA-1 (Fig. 3a) appeared consistent with those for KCA-2 (Fig. 2b), which was associated with photochemical production of RGM. However, the mean values for these two clusters were not consistent as shown in Table 5 and 6. Some of the back trajectories for HCA-2 (Fig. 3b) were consistent with those for KCA-3 (Fig. 2c); specifically, both
- ²⁵ clusters have several trajectories that traced back to parts of Minnesota, Iowa and Missouri. Similarities on some of the trajectories were expected since elevated mean cluster centres for GEM, HNO₃, NH⁺₄, NO⁻₃, and SO²⁻₄ were identified in both clusters. Furthermore, the trajectories that extended to Wisconsin, Illinois and Michigan (southeast of the ELA site) in HCA-2 (Fig. 3b) were found in KCA-2 (Fig. 2b). The trajectories


overlapped because the mean cluster centre for O_3 was elevated in both clusters. The elevated O_3 concentration was likely because the trajectories passed over major Hg point sources and urban areas that contributed to CO, NO_x , and volatile organic compound emissions. Back trajectories for HCA-3 (Fig. 3c) were similar to those for KCA-5

- ⁵ (Fig. 2e) in terms of the large proportion of trajectories from Northern Canada. The back trajectories for HCA-4 shown in Fig. 3d originated from northwest and south of the ELA site and appeared consistent with some of the trajectories for KCA-2 (Fig. 2b), KCA-4 (Fig. 2d) and KCA-5 (Fig. 2e). The presence of some of the trajectories for KCA-2 in HCA-4 was expected because of the elevated RGM and O₃ mean cluster
- ¹⁰ centres in both clusters. Elevated mean values for SO₂, Ca²⁺, Mg²⁺ and K⁺ were observed in both HCA-4 and KCA-4. Finally, the back trajectories for HCA-5 shown in Fig. 3e mainly traced back to areas north of the ELA site, which was most consistent with the trajectory results for the K-means cluster assigned to road-salt particles (KCA-1 in Fig. 2a). Compared to KCA-1, there were more trajectories in HCA-5 extending back to Hudson Bay, and some passed over Western Canada and mid-west region of
- the United States.

4 Conclusions

A data set consisting of major ions and trace gases in particulate matter, ground-level ozone concentrations and meteorological variables were analyzed to explain seasonal

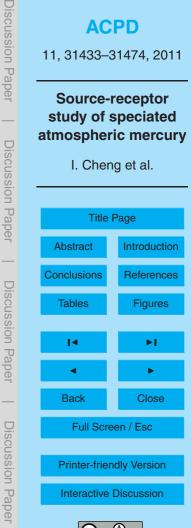
- and diurnal variations in speciated atmospheric Hg concentrations and to identify potential sources affecting speciated atmospheric Hg concentrations at the remote Experimental Lakes Area site. To identify potential sources of atmospheric Hg to the site, receptor modelling approaches including correlation analysis, principal component analysis, cluster analysis using K-means and Hierarchical methods, and HYSPLIT
- ²⁵ back trajectory modelling were applied. Multiple receptor data analysis and modelling approaches were used to reveal consistency and discrepancy in the results and interpretation of source-receptor relationships for speciated atmospheric Hg.

Analysis of seasonal variability revealed that the season with highest GEM and RGM concentrations coincided with highest O_3 concentrations. The highest PHg concentrations occurred in seasons with highest SO_2 and Na^+ concentrations and during both warm and cold seasons. Changes in temperature and relative humidity strongly affected the diurnal variability of GEM concentrations, whereas a lesser affect of these variables were observed on the diurnal variability of PHg and RGM.

Correlation coefficients between pollutant variables related to several source origins were examined. In winter, strong correlations were found between PHg, Na⁺, Cl⁻ and Mg²⁺, which suggested road-salt particles as a surface for adsorption of gaseous Hg. In the other seasons, strong correlations indicative of combustion sources, transport of industrial emissions, emissions of previously-deposited mercury from crustal, soil and agricultural activities, and photochemical production of RGM were identified. The main advantage of correlation analysis was that it can be applied to a data set with smaller number of measurements, e.g., seasonal data. Aside from the transport of industrial

emissions, the sources identified in this study were dependent on the season.

5


10

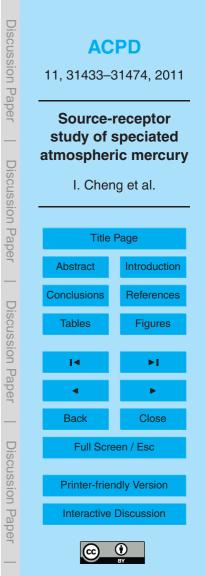
PCA generated four factors that were similar to the potential source origins identified in correlation analysis. Compared with correlation analysis, PCA was a more appropriate technique for analyzing multiple pollutant variables at once, but required a large number of measurements. Hence, this technique was only applied to the data

set covering the entire study period. The PCA factors were consistent with the clusters generated from K-means cluster analysis; however, there was an additional group that was representative of background pollution in the K-means and Hierarchical methods. In cluster analysis, the clusters were representative of the entire data set, but in PCA only a portion of the entire data set was represented. In this study, the four PCA factors explained at 20 % of the variance in the data set, while the remaining at 30 % was the

 $_{25}\,$ explained $\sim 70\,\%$ of the variance in the data set, while the remaining $\sim 30\,\%$ was the unexplained variance.

Through the use of back trajectories using the HYSPLIT model, it was revealed that even a remote site like the ELA is affected by distant Hg point sources. For the clusters related to transport of industrial and combustion emissions and photochemical

production of RGM involving ground-level O_3 , many of the back trajectories traced back to distant point sources, such as power plants, metal and steel processing plants, paper mills and cement plants located in Canada and United States, and urban areas in the mid-west US region. The cluster associated with road-salt particles from the K-


means and Hierarchical methods both have trajectories tracing back to areas north of the ELA site, which was in the direction of the Trans-Canada highway. Trajectory plots were also consistent between the K-means and Hierarchical clusters associated with background pollution.

The discrepancies between the K-means and Hierarchical method were the clusters related to industrial/combustion emissions, photochemical production of RGM, and crustal/soil emissions. As Viana et al. (2008) suggested, this may be attributed to differences in the theoretical approaches of the two cluster analysis techniques, e.g. different clustering algorithm and distance/linkage measures. Although it was possible to discriminate between these source origins by examining the mean cluster centres

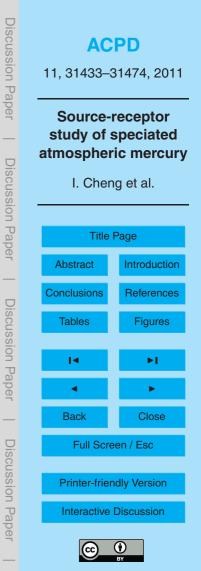
- for specific variables that were elevated, the trajectory plots for the Hierarchical clusters were similar to some of the trajectories belonging to several K-means clusters. This likely occurred because the variables indicative of industrial/combustion emissions were elevated in at least two or more of the clusters. That is, the transport of industrial/combustion emissions was often occurring simultaneously with photochemi-
- 20 cal production of RGM or crustal/soil emissions, suggesting this type of Hg source was well-represented in the data.

The data obtained for this study was not ideal for identifying specific types of industrial or combustion emissions, since secondary pollutants, such as nitrate and sulfate, could have originated from various primary sources (Hopke and Cohen, 2011). To

²⁵ investigate further into the exact types of industrial or combustion emissions using PCA or cluster analysis techniques, receptor measurements of trace metals and organic carbon concentrations are necessary. While O₃ was used to suggest potential photochemical oxidation of GEM to RGM, future measurements should include OH and reactive halogen species as they are also important atmospheric oxidants of Hg

and recent studies suggest that reactive halogens play significant roles in the photochemistry of mercury in the polar atmosphere and marine boundary layer. In addition to data requirements, further research is needed on the use of a wider variety of receptor-based techniques for studying the source-receptor relationships of speciated atmospheric mercury, as this study demonstrated that these techniques have their strengths and weaknesses, which affects how sources of speciated atmospheric mercury are interpreted.

Acknowledgements. We greatly appreciate Ken Sandilands, Michael Tate and Frank McCann of University of Alberta for their help in the collection of mercury data at ELA, Amy Hou of Environment Canada, Ken Beaty of Department of Fisheries and Oceans, and Sandy Radecki of Ontario Climate Centre for their assistance with extracting archived data for this site. The agencies/organizations responsible for data contributions in 2005–2006 to the NatChem Particulate Matter Database, NAPS data and Ontario Climate Centre include Environment Canada and Department of Fisheries and Oceans. The authors also gratefully acknowledge the NOAA Air


¹⁵ Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.arl.noaa.gov/ready.php) used in this publication.

References

25

- Abbott, M. L., Lin, C.-J., Martian, P., and Einerson, J. J.:. Atmospheric mercury near Salmon Falls Creek Reservoir in Southern Idaho, Appl. Geochem., 23, 438–453, 2008.
- Baya, A. P. and Van Heyst, B.: Assessing the trends and effects of environmental parameters on the behaviour of mercury in the lower atmosphere over cropped land over four seasons, Atmos. Chem. Phys., 10, 8617–8628, doi:10.5194/acp-10-8617-2010, 2010.
 - Brooks, S., Luke, W., Cohen, M., Kelly, P., Lefer, B., and Rappenglu, B.: Mercury species measured atop the Moody Tower TRAMP site, Houston, Texas, Atmos. Environ., 44, 4045–4055, 2010.
 - Bullock, O. R.: Current methods and research strategies for modeling atmospheric mercury, Fuel Process. Technol., 65–66, 459–471, 2000.

Bullock Jr., O. R. and Brehme, K. A.: Atmospheric mercury simulation using the CMAQ model:

formulation description and analysis of wet deposition results, Atmos. Environ., 36, 2135–2146, 2002.

Bullock, O. R., Atkinson, D., and Braverman, T.: The North American mercury model intercomparison study (NAMMIS): study description and model-to-model comparisons, J. Geophys.

Res., 113, D17310, doi:10.1029/2008JD009803, 2008. Canadian National Atmospheric Chemistry Particulate Matter Database for 2005–2006 (NatChem): Environment Canada, Science and Technology Branch, 4905 Dufferin Street, Toronto, Ontario, Canada M3H 5T4, 2010.

Carpi, A.: Mercury from combustion sources: a review of the chemical species emit-

ted and their transport in the atmosphere, Water Air Soil Poll., 98(3–4), 241–254, doi:10.1023/A:1026429911010, 1997.

Cheng, I., Lu, J., and Song, X.: Studies of potential sources that contributed to atmospheric mercury in Toronto, Canada, Atmos. Environ., 43, 6145–6158, 2009.

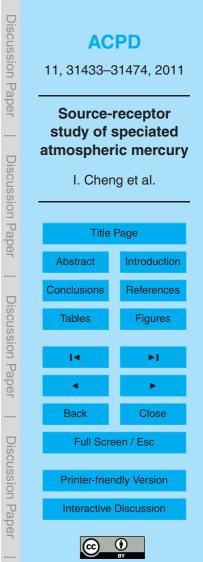
Choi, H.-D., Holsen, T. M., and Hopke, P. K.: Atmospheric mercury (Hg) in the adirondacks: concentrations and sources, Environ. Sci. Technol., 42, 5644–5653, 2008.

15

30

Christensen, J. H., Brandt, J., Frohn, L. M., and Skov, H.: Modelling of Mercury in the Arctic with the Danish Eulerian Hemispheric Model, Atmos. Chem. Phys., 4, 2251–2257, doi:10.5194/acp-4-2251-2004, 2004.

Cobbett, F. D. and Van Heyst, B. J.: Measurements of GEM fluxes and atmospheric mercury


concentrations (GEM, RGM and Hgp) from an agricultural field amended with biosolids in Southern Ont., Canada (October 2004–November 2004), Atmos. Environ., 41, 2270–2282, 2007.

Dastoor, A. P. and Larocque, Y.: Global circulation of atmospheric mercury: a modelling study, Atmos. Environ., 38, 147–161, 2004.

¹⁵ Draxler, R. R. and Rolph, G. D.: HYSPLIT Model. Access via NOAA ARL READY Website. NOAA Air Resources Laboratory, Silver Spring, MD, available at: http://www.arl.noaa.gov/ready/hysplit4.html, last access: 20 February 2011, 2003.

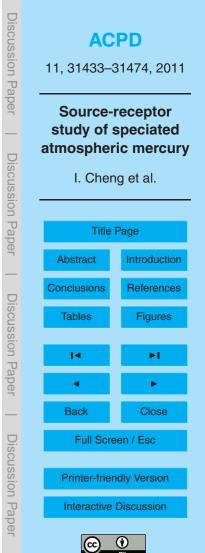
Edgerton, E. and Jansen, J.: Operation of dual mercury speciation analyzers at a site in the Southeastern US, in: 10th International Conference on Mercury as a Global Pollutant, 24–29 July 2011, Halifax, Nova Scotia, Canada, Abstract RS1-O3, 2011.

Engle, M. A., Tate, M. T., Krabbenhoft, D. P., Kolker, A., Olson, M. L., Edgerton, E. S., DeWild, J. F., and McPherson, A. K.: Characterization and cycling of atmospheric mercury along the Central US Gulf Coast, Appl. Geochem., 23(3), 419–437,

doi:10.1016/j.apgeochem2007.12.024, 2008.

10

15


- Environment Canada: National Pollutant Release Inventory, available at: http://www.ec.gc.ca/ inrp-npri/default.asp?lang=En&n=4A577BB9-1, last access: 15 December 2010, 2010. Experimental Lakes Area (ELA): available at: http://www.experimentallakesarea.ca/ELA_
- ⁵ Website.html, last access: 15 March 2011, 2010. Gabriel, M. C., Williamson, D. G., Brooks, S., and Lindberg, S.: Atmospheric speciation of mercury in two contrasting Southeastern US airsheds, Atmos. Environ., 39, 4947–4958, 2005.

Gbor, P. K., Wen, D., Meng, F., Yang, F., Zhang, B., and Sloan, J. J.: Improved model for mercury emission, transport and deposition, Atmos. Environ., 40, 973–983, 2006.

- Gustin, M. S. and Jaffe, D.: Reducing the uncertainty in measurement and understanding of mercury in the atmosphere, Environ. Sci. Technol., 44, 2222–2227, 2010.
- Hall, B. D., Olson, M. L., Rutter, A. P., Frontiera, R. R., Krabbenhoft, D. P., Gross, D. S., Yuen, M., Rudolph, T. M., and Schauer, J. J.: Atmospheric mercury speciation in Yellowstone National Park. Sci. Total. Environ., 367, 354–366, 2006.
- Han, Y.-J., Holsen, T. M., Hopke, P. K., and Yi, S.-M.: Comparison between back-trajectory based modeling and lagrangian backward dispersion modeling for locating sources of reactive gaseous mercury, Environ. Sci. Technol., 39, 1715–1723, 2005.

Han, Y.-J., Holsen, T. M., and Hopke, P. K.: Estimation of source locations of total gaseous

- ²⁰ mercury measured in New York State using trajectory-based models, Atmos. Environ., 41, 6033–6047, 2007.
 - Hedgecock, I. M., Trunfio, G. A., Pirrone, N., and Sprovieri, F.: Mercury chemistry in the MBL: mediterranean case and sensitivity studies using the AMCOTS (Atmospheric Mercury Chemistry over the Sea) model, Atmos. Environ., 39, 7217–7230, 2005.
- ²⁵ Hopke, P. K.: Recent developments in receptor modeling, J. Chemometr., 17, 255–265, 2003.
 Hopke, P. K. and Cohen, D. D.: Application of receptor modeling methods, Atmos. Pollut. Res., 2, 122–125, 2011.
 - Huang, J., Choi, H.-D., Hopke, P. K., and Holsen, T. M.: Ambient mercury sources in Rochester, NY: results from Principle Components Analysis (PCA) of mercury monitoring network data,
- ³⁰ Environ. Sci. Technol., 44, 8441–8445, 2010.
 - Keeler, G. J., Landis, M. S., Norris, G. A., Christianson, E. M., and Dvonch, J. T.: Sources of mercury wet deposition in Eastern Ohio, USA, Environ. Sci. Technol., 40, 5874–5881, 2006.
 Lee, J. H. and Hopke, P. K.: Apportioning sources of PM_{2.5} in St. Louis, MO using speciation

trends network data, Atmos. Environ., 40, S360-S377, 2006.

25

30

- Li, J., Sommar, J., Wängberg, I., Lindqvist, O., and Wei, S.-Q.: Short-time variation of mercury speciation in the urban of Göteborg during GÖTE-2005, Atmos. Environ., 42, 8382–8388, 2008.
- Lin, C.-J., Pan, L., Streets, D. G., Shetty, S. K., Jang, C., Feng, X., Chu, H.-W., and Ho, T. C.: Estimating mercury emission outflow from East Asia using CMAQ-Hg, Atmos. Chem. Phys., 10, 1853–1864, doi:10.5194/acp-10-1853-2010, 2010.
 - Lin, X. and Tao, Y.: A numerical modelling study on regional mercury budget for Eastern North America, Atmos. Chem. Phys., 3, 535–548, doi:10.5194/acp-3-535-2003, 2003.
- Lindberg, S. E. and Stratton, W. J.: Atmospheric mercury speciation: concentrations and behavior of reactive gaseous mercury in ambient air, Environ. Sci. Technol., 32, 49–57, 1998.
 Liu, B., Keeler, G. J., Dvonch, J. T., Barres, J. A., Lynam, M. M., Marsik, F. J., and Morgan, J. T.:
 - Temporal variability of mercury speciation in urban air, Atmos. Environ., 41, 1911–1923, 2007.
- Liu, B., Keeler, G. J., Dvonch, J. T., Barres, J. A., Lynam, M. M., Marsik, F. J., and Morgan, J. T.: Urban-rural differences in atmospheric mercury speciation, Atmos. Environ., 44, 2013–2023, 2010.

Logan, J. A.: Ozone in rural areas of the United States, J. Geophys. Res., 94(D6), 8511–8532, 1989.

- ²⁰ Lohman, K., Seigneur, C., Gustin, M., and Lindberg, S.: Sensitivity of the global atmospheric cycle of mercury to emissions, Appl. Geochem., 23, 454–466, 2008.
 - Lu, J. Y., Schroeder, W. H., Barrie, L. A., Steffen, A., Welch, H. E., Martin, K., Lockhart, L., Hunt, R. V., Boila, G., and Richter, A.: Magnification of atmospheric mercury deposition to polar regions in springtime: the link to tropospheric ozone depletion chemistry, Geophys. Res. Lett., 28(17), 3219–3222, 2001.
 - Lyman, S. N. and Gustin, M. S.: Speciation of atmospheric mercury at two sites in Northern Nevada, USA, Atmos. Environ., 42, 927–939, 2008.
 - Lynam, M. M. and Keeler, G. J.: Artifacts associated with the measurement of particulate mercury in an urban environment: the influence of elevated ozone concentrations, Atmos. Environ., 39, 3081–3088, 2005.
 - Lynam, M. M. and Keeler, G. J.: Source-receptor relationships for atmospheric mercury in urban Detroit, Michigan, Atmos. Environ., 40, 3144–3155, 2006.

Lyman, S. N., Jaffe, D. A., and Gustin, M. S.: Release of mercury halides from KCI denuders

in the presence of ozone, Atmos. Chem. Phys., 10, 8197-8204, doi:10.5194/acp-10-8197-2010, 2010.

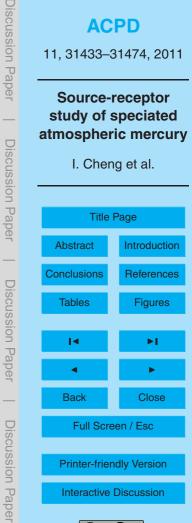
Malcolm, E. G. and Keeler, G. J.: Evidence for a sampling artifact for particulate-phase mercury in the marine atmosphere, Atmos. Environ., 41, 3352–3359, 2007.

- ⁵ Malcolm, E. G., Ford, A. C., Redding, T. A., Richardson, M. C., Strain, B. M., and Tetzner, S. W.: Experimental investigation of the scavenging of gaseous mercury by sea salt aerosol, J. Atmos. Chem., 63, 221–234, doi:10.1007/s10874-010-9165-y, 2009.
 - Manolopoulos, H., Schauer, J. J., Purcell, M. D., Rudolph, T. M., Olson, M. L., Rodger, B., and Krabbenhoft, D. P.: Local and regional factors affecting atmospheric mercury speciation at a remote location, J. Environ. Eng. Sci., 6, 491–501, 2007.

Masiol, M., Rampazzo, G., Ceccato, D., Squizzato, S., and Pavoni, B.: Characterization of PM₁₀ sources in a coastal area near Venice (Italy): an application of factor-cluster analysis, Chemosphere, 80, 771–778, 2010.

10

Mouli, P. C., Mohan, S. V., and Reddy, S. J.: Rainwater chemistry at a regional representative


- ¹⁵ urban site: influence of terrestrial sources on ionic composition, Atmos. Environ., 39, 999– 1008, 2005.
 - National Air Pollution Surveillance data for 2005–2006 (NAPS), Environment Canada, Science and Technology Branch, 4905 Dufferin Street, Toronto, Ontario, Canada M3H 5T4, 2011.
- Obrist, D., Tas, E., Peleg, M., Matveev, V., Faïn, X., Asaf, D., and Luria, M.: Bromineinduced oxidation of mercury in the mid-latitude atmosphere, Nat. Geosci., 4, 22–26, doi:10.1038/ngeo1018, 2011.
 - Ontario Climate Centre data for 2005–2006: Environment Canada, Ontario Climate Centre, 4905 Dufferin Street, Toronto, Ontario, Canada M3H 5T4, 2010.

Pallant, J.: SPSS Survival Manual, 2nd edn., chapt. 15, Open University Press, Berkshire, UK, 2005.

Peleg, M., Matveev, V., Tas, E., Luria, M., Valente, R. J., and Obrist, D.: Mercury depletion events in the troposphere in mid-latitudes at the Dead Sea, Israel, Environ. Sci. Technol., 41, 7280–7285, doi:10.1021/es070320j, 2007.

Pervez, S., Balakrishna, G., and Tiwari, S.: Source apportionment of mercury in dust fallout

- at urban residential area of Central India, Atmos. Chem. Phys. Discuss., 9, 21915–21940, doi:10.5194/acpd-9-21915-2009, 2009.
 - Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., Streets, D. G., and Telmer, K.: Global mercury emissions

to the atmosphere from anthropogenic and natural sources, Atmos. Chem. Phys., 10, 5951–5964, doi:10.5194/acp-10-5951-2010, 2010.

Poissant, L., Pilote, M., Xu, X., and Zhang, H.: Atmospheric mercury speciation and deposition in the Bay St. François wetlands, J. Geophys. Res., 109, D11301, doi:10.1029/2003JD004364, 2004.

Poissant, L., Pilote, M., Beauvais, C., Constant, P., and Zhang, H. H.: A year of continuous measurements of three atmospheric mercury species (GEM, RGM and Hgp) in Southern Quebec, Canada, Atmos. Environ., 39, 1275–1287, 2005.

Pongprueksa, P., Lin, C.-J., Lindberg, S. E., Jang, C., Braverman, T., Bullock, O. R., Ho, T. C.,

- and Chu, H.-W.: Scientific uncertainties in atmospheric mercury models III: boundary and initial conditions, model grid resolution, and Hg(II) reduction mechanism, Atmos. Environ., 42, 1828–1845, 2008.
 - Prendes, P., Andrade, J. M., López-Mahía, P., and Prada, D.: Source apportionment of inorganic ions in airborne urban particles from Coruña City (NW of Spain) using positive matrix factorization. Talanta. 49. 165–178. 1999.

factorization, Talanta, 49, 165–178, 1999.

5

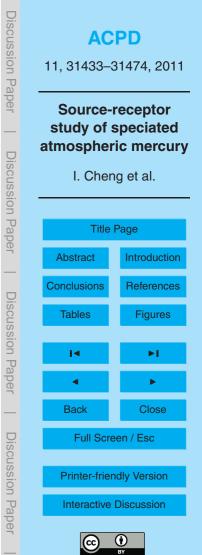
25

Rolph, G. D.: Real-time Environmental Applications and Display System (READY), Website, NOAA Air Resources Laboratory, Silver Spring, MD, available at: http://www.arl.noaa.gov/ready/hysplit4.html, last access: 20 February 2011, 2003.

Rothenberg, S. E., McKee, L., Gilbreath, A., Yee, D., Connor, M., and Fu, X.: Evidence for

- 20 short-range transport of atmospheric mercury to a rural, inland site, Atmos. Environ., 44, 1263–1273, 2010.
 - Rutter, A. P., Snyder, D. C., Stone, E. A., Schauer, J. J., Gonzalez-Abraham, R., Molina, L. T., Márquez, C., Cárdenas, B., and de Foy, B.: In situ measurements of speciated atmospheric mercury and the identification of source regions in the Mexico City Metropolitan Area, Atmos. Chem. Phys., 9, 207–220, doi:10.5194/acp-9-207-2009, 2009.
 - Ryaboshapko, A., Bullock Jr., O. R., Christensen, J., Cohen, M., Dastoor, A., Ilyin, I., Petersen, G., Syrakov, D., Artz, R. S., Davignon, D., Draxler, R. R., and Munthe, J.: Intercomparison study of atmospheric mercury models: 1. Comparison of models with short-term measurements, Sci. Total. Environ., 376, 228–240, 2007.
- ³⁰ Schroeder, W. H. and Munthe, J.: Atmospheric mercury an overview, Atmos. Environ., 32, 809–822, 1998.

Selin, N. E., Jacob, D. J., Park, R. J., Yantosca, R. M., Strode, S., Jaeglé, L., and Jaffe, D.: Chemical cycling and deposition of atmospheric mercury: global constraints from



observations, J. Geophys. Res., 112, D02308, doi:10.1029/2006JD007450, 2007.

- Sigler, J. M., Mao, H., and Talbot, R.: Gaseous elemental and reactive mercury in Southern New Hampshire, Atmos. Chem. Phys., 9, 1929–1942, doi:10.5194/acp-9-1929-2009, 2009.
 Sillman, S., Marsik, F. J., Al-Wali, K. I., Keeler, G. J., and Landis, M. S.: Reactive mercury in the
- troposphere: model formation and results for Florida, the Northeastern United States, and the Atlantic Ocean, J. Geophys. Res., 112, D23305, doi:10.1029/2006JD008227, 2007.
 - Song, X., Cheng, I., and Lu, J.: Annual atmospheric mercury species in downtown Toronto, Canada, J. Environ. Monit., 11, 660–669, 2009.

Sprovieri, F., Hedgecock, I. M., and Pirrone, N.: An investigation of the origins of reactive

- ¹⁰ gaseous mercury in the Mediterranean marine boundary layer, Atmos. Chem. Phys., 10, 3985–3997, doi:10.5194/acp-10-3985-2010, 2010a.
 - Sprovieri, F., Pirrone, N., Ebinghaus, R., Kock, H., and Dommergue, A.: A review of worldwide atmospheric mercury measurements, Atmos. Chem. Phys., 10, 8245–8265, doi:10.5194/acp-10-8245-2010, 2010b.
- 15 StatSoft, Inc.: Electronic Statistics Textbook, Tulsa, OK, available at: http://www.statsoft.com/ textbook/, last access: 15 March 2011, 2011.
 - Steffen, A., Douglas, T., Amyot, M., Ariya, P., Aspmo, K., Berg, T., Bottenheim, J., Brooks, S., Cobbett, F., Dastoor, A., Dommergue, A., Ebinghaus, R., Ferrari, C., Gardfeldt, K., Goodsite, M. E., Lean, D., Poulain, A. J., Scherz, C., Skov, H., Sommar, J., and Temme, C.: A
- ²⁰ synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow, Atmos. Chem. Phys., 8, 1445–1482, doi:10.5194/acp-8-1445-2008, 2008.
 - Talbot, R., Mao, H., Feddersen, D., Smith, M., Kim, S. Y., Sive, B., Haase, K., Ambrose, J., Zhou, Y., and Russo, R.: Comparison of particulate mercury measured with manual and automated methods, Atmosphere, 2, 1–20, doi:10.3390/atmos2010001, 2011.
- USEPA: Toxics Release Inventory Explorer, available at: http://www.epa.gov/triexplorer/facility. htm, last access: 15 December 2010, 2011.
 - Valente, R. J., Shea, C., Humes, K. L., and Tanner, R. L.: Atmospheric mercury in the Great Smoky Mountains compared to regional and global levels, Atmos. Environ., 41, 1861–1873, 2007.
- ³⁰ Viana, M., Kuhlbusch, T. A. J., Querol, X., Alastuey, A., Harrison, R. M., Hopke, P. K., Winiwarter, W., Vallius, M., Szida, S., Prévôt, A. S. H., Hueglin, C., Bloemen, H., Wåhlin, P., Vecchi, R., Miranda, A. I., Kasper-Giebl, A., Maenhaut, W., and Hitzenberge, R.: Source apportionment of particulate matter in Europe: a review of methods and results, J. Aerosol

Sci., 39, 827-849, 2008.

15

- Vijayaraghavan, K., Karamchandani, P., Seigneur, C., Balmori, R., and Chen, S.-Y.: Plume-in-grid modeling of atmospheric mercury, J. Geophys. Res., 113, D24305, doi:10.1029/2008JD010580, 2008.
- ⁵ Wang, H. and Shooter, D.: Water soluble ions of atmospheric aerosols in three New Zealand cities: seasonal changes and sources, Atmos. Environ., 35, 6031–6040, 2001.
 - Watson, J. G., Chen, L. W. A., Chow, J. C., Doraiswamy, P., and Lowenthal, D. H.: Source apportionment: findings from the US supersites program, J. Air Waste Manage., 58, 265–288, doi:10.3155/1047-3289.58.2.265, 2008.
- Xu, X. and Akhtar, U. S.: Identification of potential regional sources of atmospheric total gaseous mercury in Windsor, Ontario, Canada using hybrid receptor modeling, Atmos. Chem. Phys., 10, 7073–7083, doi:10.5194/acp-10-7073-2010, 2010.
 - Xu, X., Yang, X., Miller, D. R., Helble, J. J., and Carley, R. J.: A regional scale modeling study of atmospheric transport and transformation of mercury, I. Model development and evaluation, Atmos. Environ., 34, 4933–4944, 2000.
 - Yatavelli, R. L. N., Fahrni, J. K., Kim, M., Crist, K. C., Vickers, C. D., Winter, S. E., and Connell, D. P.: Mercury, PM_{2.5} and gaseous co-pollutants in the Ohio River Valley region: preliminary results from the Athens supersite, Atmos. Environ., 40, 6650–6665, 2006.

Zhang, L., Vet, R., Wiebe, A., Mihele, C., Sukloff, B., Chan, E., Moran, M. D., and Iqbal, S.:
 Characterization of the size-segregated water-soluble inorganic ions at eight Canadian rural sites, Atmos. Chem. Phys., 8, 7133–7151, doi:10.5194/acp-8-7133-2008, 2008.

- Zhang, L., Blanchard, P., Johnson, D., Dastoor, A., Ryzhkov, A., Lin, C.-J., Vijayaraghavan, K., Gay, D., Holsen, T. M., Huang, J., Graydon, J. A., St. Louis, V. L., Castro, M. S., Miller, E. K., Marsik, F., Lu, J., Poissant, L., Pilote, M., and Zhang, K. M.: Assessment of modelled mercury deposition over the Great Lakes region, Environ. Pollut., in press,
- of modelled mercury deposition over the Great Lakes region, Environ. Pollut., in press, doi:10.1016/j.envpol.2011.06.003, 2011.

		PD 31474, 2011
	study of stu	receptor speciated ric mercury ng et al.
	Title	Page
5	Abstract	Introduction
-	Conclusions	References
	Tables	Figures
5	14	۰I
))))))))))))))))))))	•	•
-	Back	Close
	Full Scre	een / Esc
)	Printer-frier	ndly Version
	Interactive	Discussion
5		•

Table 1. Descriptive statistics of data set for the ELA site for the period between 17 May 2005 and 31 December 2006.

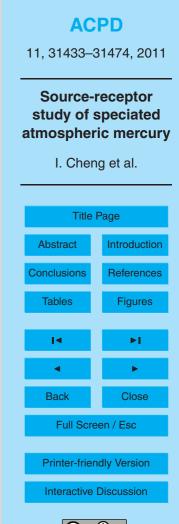
Speciated atmospheric Hg	Mean	Standard deviation	Min.	Max.	% missing data	# of data available	% of data < DL
GEM (ng m ^{-3})	1.57	0.22	0.75	3.82	0.0	2361	0.0
PHg (pg m ^{-3})	4.42	3.67	0.00	42.33	5.2	2238	2.6
$RGM~(pgm^{-3})$	0.99	1.89	0.00	24.89	5.2	2239	51.4
Other	Mean	Standard	Min.	Max.	% missing	# of valid	% of data
pollutants		deviation			data	data	< DL
$SO_2 (\mu g m^{-3})$	0.36	0.44	0.01	2.67	12.1	495	29.9
$HNO_3 (\mu g m^{-3})$	0.30	0.29	0.01	1.66	10.7	503	12.7
Ca ²⁺ (µg m ⁻³)	0.17	0.28	0.01	3.20	5.7	531	38.0
Mg^{2+} (µg m ⁻³)	0.036	0.049	0.000	0.37	5.9	530	26.8
K^{+} (µg m ⁻³)	0.034	0.040	0.000	0.31	5.7	531	31.8
Na ⁺ (μg m ⁻³)	0.025	0.036	0.000	0.35	5.9	530	13.8
Cl ⁻ (µg m ⁻³)	0.017	0.027	0.000	0.35	5.9	530	70.8
NH_{4}^{+} (µg m ⁻³)	0.33	0.44	0.00	3.22	5.7	531	6.0
NO_{3}^{-} (µg m ⁻³)	0.32	0.61	0.02	6.58	5.7	531	22.8
SO_4^{2-} (µg m ⁻³)	0.91	1.16	0.01	9.17	5.7	531	6.2
O ₃ (ppb)	30.97	10.17	5.00	68.33	0.2	2357	0.0

ACPD 11, 31433–31474, 2011						
study of	receptor speciated ric mercury					
I. Cher	ng et al.					
Title	Page					
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
14	►I					
•	•					
Back	Close					
Full Scre	Full Screen / Esc					
Printer-friendly Version						
Interactive	Discussion					
	O					

BY

Discussion Paper

Discussion Paper


Discussion Paper

Discussion Paper

Location	Time of sampling	Site description	GEM/TGM ng m^{-3}	PHg pg m ⁻³	$ m RGM~pgm^{-3}$	Reference
Experimental Lakes Area, Ontario, Canada	May 2005– Dec 2006	Remote	1.56 ± 0.22	4.42 ± 3.67	0.99±1.89	This Study
Devil's Lake, Wisconsin	Apr 2003– 2004	Remote	1.6 ± 0.3	8.6 ± 8.3	3.8 ± 8.9	Manolopoulos et al. (2007)
Adirondacks, New York	Jun 2006– May 2007	Remote	1.4 ± 0.4	3.2 ± 3.7	1.8 ± 2.2	Choi et al. (2008)
Yellowstone National Park, USA	3–12 Sep 2003	Remote	< 1 to 2.5	< DL to 30	< 0.88 to 5	Hall et al. (2006)
Thompson Farm, New Hampshire	2007	Remote	1.4	n/a	3.6	Sigler et al. (2009)
Pac Monadnock, New Hampshire	2007	Remote	1.4	n/a	1.2	Sigler et al. (2009)
Salmon Falls Creek Reservoir, Idaho	Jul and Nov 2005; Feb and May 2006	Remote	1.32 to 1.91 ^a	n/a	2.3 to 8.2 ^ª	Abbott et al. (2008)
Dexter, Michigan	2004	Rural	1.59 ± 0.59	6.10 ± 5.51	3.80 ± 6.62	Liu et al. (2010)
Great Smoky Mountains Nat'l Park, USA	May 2004 to Aug 2004	Rural	1.65	7	5	Valente et al. (2007)
Elora, Ontario	Nov 2006 to Aug 2007	Rural- agriculture	1.2 ± 0.51	16.4 ± 9.54	15.1 ± 10.02	Baya and Van Heyst (2010)
Maryhill, Ontario	Oct to Nov 2004	Rural- agriculture	1.8 ± 0.2	3.0 ± 6.2	2.3 ± 3.0	Cobbett and Van Heyst (2007)
St. Anicet, Quebec	2003	Rural- agriculture	1.65 ± 0.42	26 ± 54	3±11	Poissant et al. (2005)
Calero, San Francisco Bay Area	2005 and 2008	Rural- industrial	1.85 to 2.37 ^a	3.68 to 7.99 ^a	4.58 to 14.5 ^a	Rothenberg et al. (2010)
Cove Mountain, Tennessee	Aug to Sep 2002	Rural- industrial	2 to 5	3 to 75	3 to 60	Gabriel et al. (2005)
Athens, Ohio	Jul 2004 to Jul 2005	Rural- industrial	1.62 ± 0.24	5.29 ± 6.04	12.45 ± 24.53	Yatavelli et al. (2006)

Table 2. Speciated atmospheric mercury concentrations at selected remote and rural sites.

^a This is the range of the mean concentrations over the study periods, instead of from min. to max.

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

	Discussion Paper	11, 31433– Source- study of	PD 31474, 2011 receptor speciated
		atmosphei	ric mercury
2006	scu	I. Cher	ng et al.
50	Discussion Paper	. <u> </u>	
67	DN F		
38 68	ape	Title	Page
66		Abstract	Introduction
61	—	Conclusions	References
73		Conclusions	Tielerences
21 35	SCUS	Tables	Figures
50	oisio		
64	n Pi	I	►I
40 16	Discussion Paper	•	•
		Back	Close
, August;	Discussion Paper	Full Scr	een / Esc
	ssion	Printer-frier	ndly Version
	Pap	Interactive	Discussion
	er		O BY

 Table 3a.
 Spearman rank correlation coefficients between PHg and other pollutants.

		PHg						
	Summer 2005	Fall 2005	Winter 2006	Spring 2006	Summer 2006	Fall 2006		
GEM	0.39	0.39	-0.19	0.18	0.53	0.50		
RGM	0.57	0.39	0.70	0.62	0.47	0.67		
SO ₂	0.43	0.49	-0.01	0.52	0.30	0.38		
HN _O 3	0.36	0.78	-0.21	0.34	0.49	0.68		
Ca ²⁺	0.54	0.62	0.20	0.39	0.50	0.66		
Mg ²⁺	0.48	0.62	0.58	0.56	0.50	0.61		
K⁺	0.40	0.68	0.05	0.21	0.58	0.73		
Na⁺	0.35	0.4	0.73	0.41	0.09	0.21		
Cl⁻	0.24	0.09	0.52	0.02	0.41	0.35		
NH_4^+	0.62	0.61	-0.21	0.18	0.43	0.50		
	0.63	0.69	0.30	0.30	0.34	0.64		
NO_3^- SO_4^{2-}	0.62	0.62	-0.40	0.28	0.38	0.40		
O ₃	0.68	0.37	0.66	0.62	0.27	0.16		

Correlation coefficients shown in **bold** were statistically significant (p < 0.01).

Winter months: December, January, February; Spring months: March, April, May; Summer months: June, July, August; Fall months: September, October, November.

 Table 3b.
 Spearman rank correlation coefficients for selected pollutants indicative of source origins.

	Summer 2005	Fall 2005	Winter 2006	Spring 2006	Summer 2006	Fall 2006
Re-suspended of	dust (from crust	al/soil/road	/point sources	s) or sea-salt o	rigin	
Ca^{2+} and K^+	0.27	0.69	0.40	0.66	0.54	0.70
SO_4^{2-} and Ca^{2+}	0.64	0.42	-0.18	0.60	0.49	0.45
Na ⁺ and Cl⁻	0.40	0.62	0.62	0.38	0.26	0.41
K^+ and CI^-	0.45	0.02	0.18	0.17	0.56	0.24
Na^+ and Ca^{2+}	0.32	0.18	0.38	0.18	0.32	0.26
Ca^{2+} and CI^{-}	0.27	0.08	0.43	0.06	0.23	0.29
Na^+ and K^+	0.47	0.06	0.04	-0.02	0.37	0.21
Mg ²⁺ and Ca ²⁺	0.96	0.91	0.66	0.87	0.97	0.93
Mg ²⁺ and Cl [−]	0.17	0.21	0.70	0.18	0.21	0.30
Mg^{2+} and Na^+	0.30	0.31	0.80	0.38	0.27	0.35
Agricultural acti	ivities origin					
NH_4^+ and NO_3^-	0.76	0.72	0.48	0.72	0.55	0.73
Industrial transp	port origin					
SO_2 and SO_4^{2-}	0.63	0.43	0.11	0.61	0.44	0.47
SO_4^{2-} and NH_4^+	0.99	0.95	0.68	0.95	0.96	0.60
SO_2 and NO_3^{-1}	0.57	0.56	0.16	0.53	0.46	0.36
NO_3^- and SO_4^{2-}	0.78	0.68	-0.04	0.67	0.67	0.60
RGM and SO_2	0.73	0.45	0.09	0.52	0.39	0.48
RGM and CI^-	0.10	-0.12	0.28	-0.09	0.31	0.33
Photochemical/						
GEM and O ₃	0.56	0.62	0.09	0.31	0.36	0.19
RGM and O ₃	0.68	0.34	0.65	0.78	0.31	0.29
GEM and RGM	0.57	0.06	0.05	0.08	0.30	0.63

ACPD

11, 31433-31474, 2011

Discussion Paper

Discussion Paper

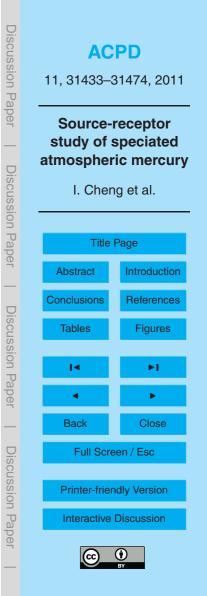
Discussion Paper

Discussion Paper

Source-receptor study of speciated atmospheric mercury

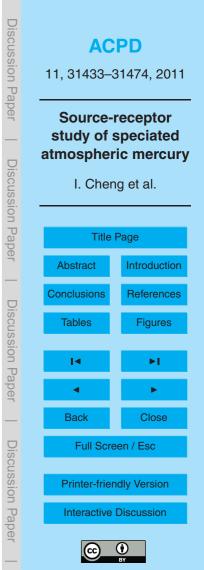
I. Cheng et al.

Title Page					
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
	_				
	▶1				
•	•				
Back	Close				
Full Scr	een / Esc				
Printer-friendly Version					
Interactive	Discussion				


Correlation coefficients shown in **bold** were statistically significant (p < 0.05).

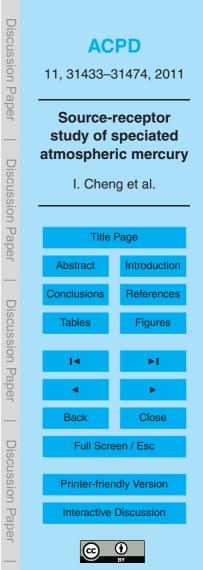
Winter months: December, January, February; Spring months: March, April, May; Summer months: June, July, August; Fall months: September, October, November.

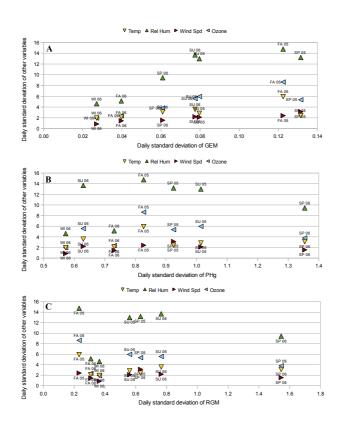
	PCA-1	PCA-2	PCA-3	PCA-4
GEM	0.48	0.60		
PHg		0.62	0.26	0.39
RGM		0.87		
SO ₂	0.37	0.25		0.29
HNO ₃	0.76	0.31	0.33	
Ca ²⁺	0.32		0.87	
Mg ²⁺			0.92	
K ⁺	0.53		0.45	
Na ⁺				0.91
Cl				0.81
NH ₄ ⁺	0.95			
NO ₃	0.65			
SO ²⁻	0.88			
O ₃	0.31	0.80		
Temperature			0.57	-0.58
Relative humidity		-0.81	-0.26	
% of variance explained	22.6	19.0	15.5	13.3


Table 4. Factor loadings from Principal Components Analysis.

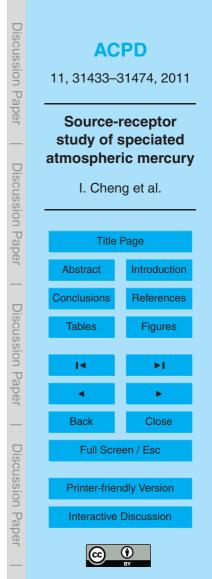
	KCA-1	KCA-2	KCA-3	KCA-4	KCA-5
GEM (ng m $^{-3}$)	1.57	1.71	2.00	1.59	1.52
PHg (pg m ^{-3})	9.11	6.56	5.45	7.28	3.35
RGM (pg m ^{-3})	1.66	2.14	0.55	0.90	0.63
SO ₂ (μg m ⁻³)	0.55	0.63	0.26	1.33	0.26
$HNO_3 (\mu g m^{-3})$	0.12	0.69	0.70	0.77	0.19
Ca ²⁺ (µg m ⁻³)	0.05	0.39	0.09	1.63	0.09
Mg^{2+} (µg m ⁻³)	0.03	0.08	0.01	0.23	0.02
$K^+ (\mu g m^{-3})$	0.02	0.08	0.06	0.11	0.02
Na^+ (µg m ⁻³)	0.14	0.03	0.02	0.03	0.02
Cl ⁻ (µg m ⁻³)	0.10	0.02	0.02	0.02	0.01
NH_{4}^{+} (µg m ⁻³)	0.11	0.78	2.57	0.85	0.20
NO_{3}^{-} (µg m ⁻³)	0.25	0.59	4.59	2.07	0.17
SO ₄ ²⁻ (μg m ⁻³)	0.44	2.22	3.29	2.15	0.55
O ₃ (ppb)	34.11	40.76	31.52	32.96	28.84
Temperature (°C)	-8.44	13.92	8.35	13.70	5.85
Relative humidity (%)	69.95	66.07	82.32	69.87	74.23
% of data in each clust	er with co	ncentratio	ns > 75th	percentile) ¹
GEM	19%	58%	100 %	33 %	16%
PHg	67 %	54%	43 %	56 %	12%
RGM	61 %	66 %	14%	44 %	16%

Table 5. Mean cluster centres from K-means cluster analysis.


Mean cluster centres shown in **bold** were > 80th percentile value and were considered elevated. ¹ 75th percentile GEM, PHg and RGM was 1.7 ng m^{-3} , 6.09 pg m^{-3} and 1.07 pg m^{-3} , respectively for the entire study period.



	HCA-1	HCA-2	HCA-3	HCA-4	HCA-5
GEM (ng m^{-3})	1.71	1.8	1.46	1.68	1.65
PHg (pg m ^{-3})	4.56	4.88	2.8	6.19	7.29
RGM (pg m ^{-3})	1.1	0.86	0.26	2.19	2.88
SO ₂ (μg m ⁻³)	0.18	0.57	0.28	0.81	0.5
$HNO_3 (\mu g m^{-3})$	0.34	0.93	0.17	0.67	0.22
Ca^{2+} (µg m ⁻³)	0.14	0.26	0.1	0.81	0.05
Mg^{2+} (µg m ⁻³)	0.03	0.04	0.02	0.15	0.02
K ⁺ (μg m ⁻³)	0.05	0.09	0.02	0.08	0.01
Na^{+} (µg m ⁻³)	0.01	0.02	0.01	0.03	0.07
Cl ⁻ (µg m ⁻³)	0.01	0.02	0.01	0.01	0.03
NH_{4}^{+} (µg m ⁻³)	0.31	1.97	0.2	0.55	0.16
NO_{3}^{-} (µg m ⁻³)	0.17	1.64	0.22	0.85	0.18
SO_4^{2-} (µg m ⁻³)	0.83	4.91	0.54	1.53	0.58
O ₃ (ppb)	36.58	40.56	25.55	40.06	38.24
Temperature (°C)	12.8	11.68	5.16	14.89	-6.42
Relative humidity (%)	68.57	82.51	76.3	63.22	58.42
% of data in each clust				•	
GEM	63%	69%	3%	43%	40 %
PHg	21%	31 %	6%	49%	60 %
RGM	43%	46 %	4%	66 %	70 %


Table 6. Mean cluster centres from hierarchical cluster analysis.

Mean cluster centres shown in **bold** were > 80th percentile value and were considered elevated. ¹ 75th percentile GEM, PHg and RGM was 1.7 ng m^{-3} , 6.09 pg m^{-3} and 1.07 pg m^{-3} , respectively for the entire study period.

Fig. 1. Effect of diurnal variability of temperature, relative humidity, wind speed, and groundlevel O_3 on the diurnal variability of **(A)** GEM, **(B)** PHg, and **(C)** RGM for each season (WI = winter, SP = spring, SU = summer, FA = fall; 05 = 2005 year, 06 = 2006 year). The daily standard deviation is used as a measure of diurnal variability.

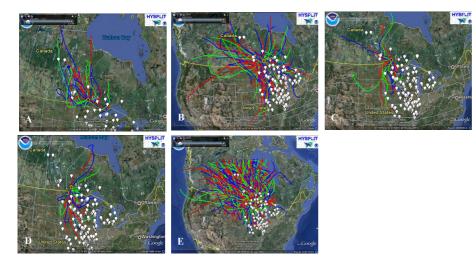
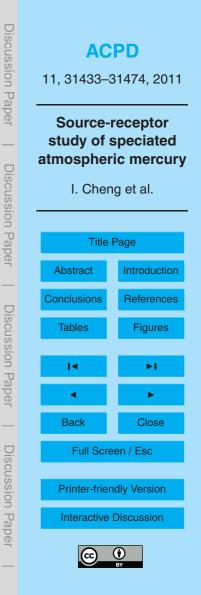



Fig. 2. Two-day HYSPLIT (NOAA ARL, 2011) back trajectories for K-means clusters. (A) KCA-1, (B) KCA-2, (C) KCA-3, (D) KCA-4, and (E) KCA-5. White placemarks represent Hg point sources.

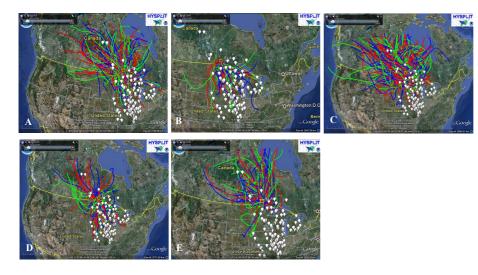
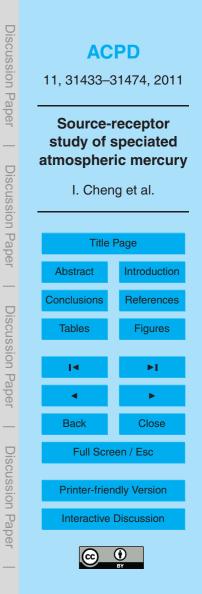



Fig. 3. Two-day HYSPLIT (NOAA ARL, 2011) back trajectories for Hierarchical clusters. (A) HCA-1, (B) HCA-2, (C) HCA-3, (D) HCA-4, and (E) HCA-5. White placemarks represent Hg point sources.

